

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Campos Electromagnéticos	
Código	DIE-GITI-221	
Título	Grado en Ingeniería en Tecnologías Industriales por la Universidad Pontificia Comillas	
Impartido en	Grado en Ingeniería en Tecnologías Industriales [Segundo Curso]	
Nivel	Reglada Grado Europeo	
Cuatrimestre	Semestral	
Créditos	6,0 ECTS	
Carácter	Básico	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Responsable	EFRAIM CENTENO HERNÁEZ	
Horario	A determinar por el profesor	
Horario de tutorías	A determinar por el profesor	

Datos del profesorado		
Profesor		
Constantino Malagón Luque		
Departamento de Ingeniería Eléctrica		
cmalagon@icai.comillas.edu		
Efraim Centeno Hernáez		
artamento / Área Departamento de Ingeniería Eléctrica		
D-402 - Santa Cruz de Marcenado 26		
Efraim.Centeno@iit.comillas.edu		
Enrique Picatoste Calvo		
Departamento de Ingeniería Eléctrica		
epicatoste@icai.comillas.edu		
Fidel Fernández Bernal		
Departamento de Ingeniería Eléctrica		
D307 - Alberto Aguilera 25		

Correo electrónico	fidelf@iit.comillas.edu	
Profesor		
Nombre	Paula Arribas Fernández	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Correo electrónico	parribas@icai.comillas.edu	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

El electromagnetismo es una de las cuatro fuerzas fundamentales de la naturaleza (fuerte, electromagnética, débil y gravitacional, por orden decreciente de intensidad). El conocimiento de los fundamentos de la teoría electromagnética es importante para entender gran parte de los fenómenos físicos que tienen lugar a nuestro alrededor, así como un sinfín de aplicaciones en ingeniería.

Este es un curso de electromagnetismo de nivel intermedio en el que

- Se repasa en profundidad los fundamentos de electrostática y magnetostática en el vacío y en medios materiales.
- Se utilizan técnicas matemáticas potentes para resolver problemas en este y otros campos.
- Se estudian los fundamentos de electrodinámica y sus consecuencias.
- Se analizan diversas aplicaciones industriales del electromagnetismo.

Compete	Competencias - Objetivos		
-	Competencias		
GENERALI	GENERALES		
CG03	Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.		
CG04	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.		
ESPECÍFI	CAS		
CFB02	Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas y electromagnetismo y su aplicación para la resolución de problemas propios de la ingeniería.		
CRI04	Conocimiento y utilización de los principios de teoría de circuitos y máquinas eléctricas.		

Resultado	Resultados de Aprendizaje		
RA1	en la materia. Efectos sobre la materia y caracterización de dichos materiales Modelar de forma sencilla sistemas complejos para el cálculo aproximado de campos y potenciales utilizando las leyes básicas del electromagnetismo Utilizar los operadores vectoriales para su uso en el ámbito de los campos. Comprender de forma básica las ondas electromagnéticas y sus aplicaciones Calcular capacidades e inductancias en sistemas sencillos. Usar herramientas informáticas para		
RA2			
RA3			
RA4			
RA5			

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

Tema 1: Electrostática. Cargas y campos

- 1.1. Ley de Coulomb
- 1.2 Campo eléctrico: concepto y representación vectorial
- 1.3 Ley de Gauss y aplicación al cálculo del campo eléctrico en simetrías plana, esférica y cilíndrica
- 1.4 Energía electrostática
- 1.5 Fuerza sobre una capa de carga

Tema 2: Potencial eléctrico. Operadores vectoriales.

- 2.1. Superficies equipotenciales y operador gradiente
- 2.2. Definición de potencial eléctrico
- 2.3. Divergencia y ley de Gauss diferencial
- 2.4. Ecuación de Poisson y Laplaciana.
- 2.5. Rotacional y teorema de Stokes

Tema 3: Conductores.

- 3.1. Características generales de los conductores
- 3.2. Teorema de unicidad de soluciones
- 3.3. Efecto pantalla
- 3.4. Método de las imágenes.
- 3.5. Metalizado de equipotenciales
- 3.6. Solución analítica de la ecuación de Laplace
- 3.7. Capacidad de conductores y condensadores
- 3.8. Energía almacenada en un condensador
- 3.9. Fuerzas sobre conductores y método de los trabajos virtuales para el cálculo de fuerzas
- 3.10. Cálculo del campo por métodos numéricos: método de relajación

Tema 4: Campo eléctrico en medios materiales

- 4.1. Polarización dieléctrica. Campos internos y externos
- 4.2. Condensadores con material dieléctrico
- 4.3. Momento dipolar eléctrico: campo de un dipolo, pares y fuerzas en un dipolo
- 4.4. Materiales polarizados y tipo de polarización
- 4.5. Vector desplazamiento eléctrico y aplicaciones
- 4.6. Aplicaciones industriales de la electrostática

Tema 5: Corriente eléctrica

- 5.1. Ley de Ohm
- 5.2. Densidad de corriente
- 5.3. Ley de Ohm vectorial
- 5.4. Cálculo general de resistencias
- 5.5. Ecuación de conservación de la carga y de continuidad
- 5.6. Ley de Joule
- 5.7. Teorías de la conducción eléctrica: teoría cinética y ondulatoria
 - 5.8. Aplicaciones industriales

Tema 6: Campo magnético en el vacío

- 6.1. Definición del campo magnético
- 6.2. Campo y fuerzas producido por un hilo de corriente
- 6.3. Ley de Ampère
- 6.4. Láminas de corriente
- 6.5. Propiedades del campo magnético y teorema de unicidad
- 6.8. Ley de Biot-Savart diferencial
- 6.9. Vector potencial magnético

Tema 7: Inducción electromagnética

- 7.1. Ley de Faraday integral y diferencial
- 7.2. Fuerza magnética y tensión inducida
- 7.3. Autoinducción e inducción mutua
- 7.4. Aplicaciones industriales.

Tema 8: Campos electromagnéticos en la materia

- 8.1. Analogías entre magnetización y polarización
- 8.2. Momento dipolar magnético: campo de un dipolo, pares y fuerzas sobre un dipolo
- 8.3. Vector H intensidad de campo magnético y ley de Ampère
- 8.4. Materiales magnéticos. Curva B-H y ciclo de histéresis.
- 8.5. Corrientes de Foucault
- 8.6. Circuitos magnéticos
- 8.7. Aplicaciones industriales de la magnetostática. Análisis electromecánico de sistemas magnéticos con entrehierro. Fuerza en sistemas con movimiento lineal. Par en sistemas con movimiento giratorio. Conductores embebidos en materiales magnéticos
- 8.8. Métodos numéricos para la solución de problemas magnetostáticos complejos

Tema 9: Ecuaciones de Maxwell y ondas electromagnéticas

- 9.1. Ley de Ampère Maxwell
- 9.2. Ecuaciones de Maxwell
- 9.3. Ecuación de ondas
- 9.4. Propiedades de las ondas electromagnéticas
- 9.5. Energía de una onda electromagnética y vector de Poynting.
- 9.6. Aplicaciones industriales.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

- 1. Clase Magistral. El profesor introduce los conceptos o aplicaciones básicas.
- 2. **Problemas de clase**. Los alumnos, individualmente o en grupo, intentan hacer el problema asignado que trata los conceptos explicados por el profesor. Por último, el profesor discute su solución.

Metodología No presencial: Actividades

- 1. **Estudio del material presentado en clase**. Actividad realizada individualmente por el estudiante repasando y completando lo visto en clase.
- 2. **Resolución de problemas de carácter práctico o aplicado**. Actividad realizada individualmente por el estudiante resolviendo problemas proporcionados por el profesor.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES			
Clase magistral y presentaciones generales	Resolución de problemas de carácter práctico o aplicado		
35.00	25.00		
HORAS NO PRESENCIALES			
Estudio de conceptos teóricos fuera del horario de clase por parte del alumno	Resolución de problemas de carácter práctico o aplicado		
80.00	40.00		
	CRÉDITOS ECTS: 6,0 (180,00 horas)		

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso

Examenes • Examen intersemestral. • Examen final.	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. 	85
Evaluación continua del rendimiento	Prueba de seguimiento Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. Asistencia y actitud en clase Nivel de asistencia a las clases. Participación en clase.	15

Calificaciones

Convocatoria Ordinaria

- 5% participación en clase
- 10% prueba de seguimiento
- 25% nota de examen intersemestral
- 60% nota del examen convocatoria ordinaria

Convocatoria Extraordinaria

- 3.75% participación en clase
- 7.5% prueba de seguimiento
- 18.75% examen intersemestral
- 70% examen convocatoria extraordinaria.

PLAN DE TRABAJO Y CRONOGRAMA

	Fecha de	
Actividades		Fecha de entrega

	realizacion	
Ver última página		

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- E. M. Purcell. Electricidad y Magnetismo, 2ª edición. Reverté 1994.
- T.A. Moore. Six ideas that shaped physics, Unit. E. 2ª ed. McGraw-Hill

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792